Multi-Objective Multi-Label Classification

نویسندگان

  • Chuan Shi
  • Xiangnan Kong
  • Philip S. Yu
  • Bai Wang
چکیده

Multi-label classification refers to the task of predicting potentially multiple labels for a given instance. Conventional multi-label classification approaches focus on the single objective setting, where the learning algorithm optimizes over a single performance criterion (e.g. Ranking Loss) or a heuristic function. The basic assumption is that the optimization over one single objective can improve the overall performance of multilabel classification and meet the requirements of various applications. However, in many real applications, an optimal multi-label classifier may need to consider the tradeoffs among multiple conflicting objectives, such as minimizing Hamming Loss and maximizing Micro F1. In this paper, we study the problem of multi-objective multi-label classification and propose a novel solution (called Moml) to optimize over multiple objectives simultaneously. Note that optimization objectives may be conflicting, thus one cannot identify a single solution that is optimal on all objectives. Our Moml algorithm finds a set of non-dominated solutions which are optimal according to the different tradeoffs of the multiple objectives. So users can flexibly construct various combined predictive models from the solution set, which helps to provide more meaningful classification results in different application scenarios. Empirical studies on real-world tasks demonstrate that the Moml can effectively boost the overall performance of multi-label classification, not limiting to the optimization objectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-label Linear Discriminant Analysis

Multi-label problems arise frequently in image and video annotations, and many other related applications such as multi-topic text categorization, music classification, etc. Like other computer vision tasks, multi-label image and video annotations also suffer from the difficulty of high dimensionality because images often have a large number of features. Linear discriminant analysis (LDA) is a ...

متن کامل

Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms

OBJECTIVE This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. ...

متن کامل

Streaming Multi-label Classification

This paper presents a new experimental framework for studying multi-label evolving stream classification, with efficient methods that combine the best practices in streaming scenarios with the best practices in multi-label classification. Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non strea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012